3.155 \(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \, dx\)

Optimal. Leaf size=95 \[ \frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {4 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

[Out]

16/5*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(cos(
1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*cos(d*x+c)^(3/2)*si
n(d*x+c)/d+4/3*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2757, 2639, 2635, 2641} \[ \frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {4 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2,x]

[Out]

(16*a^2*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^2*EllipticF[(c + d*x)/2, 2])/(3*d) + (4*a^2*Sqrt[Cos[c + d*x]]
*Sin[c + d*x])/(3*d) + (2*a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2757

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \, dx &=\int \left (a^2 \sqrt {\cos (c+d x)}+2 a^2 \cos ^{\frac {3}{2}}(c+d x)+a^2 \cos ^{\frac {5}{2}}(c+d x)\right ) \, dx\\ &=a^2 \int \sqrt {\cos (c+d x)} \, dx+a^2 \int \cos ^{\frac {5}{2}}(c+d x) \, dx+\left (2 a^2\right ) \int \cos ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {2 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{5} \left (3 a^2\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{3} \left (2 a^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {16 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 5.62, size = 235, normalized size = 2.47 \[ \frac {a^2 (\cos (c+d x)+1)^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (-24 \cos (c) \sqrt {\sec ^2(c)} \sqrt {\sin ^2\left (\tan ^{-1}(\tan (c))+d x\right )} \csc \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )-20 \sin (c) \sqrt {\csc ^2(c)} \cos (c+d x) \sqrt {\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )+\cos (c+d x) (20 \sin (c+d x)+3 \sin (2 (c+d x))-48 \cot (c))+\frac {12 \csc (c) \sec (c) \left (3 \cos \left (c-\tan ^{-1}(\tan (c))-d x\right )+\cos \left (c+\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt {\sec ^2(c)}}\right )}{60 d \sqrt {\cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2,x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*((12*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[
c]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 20*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hyperge
ometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + Cos[c + d*x]*(-4
8*Cot[c] + 20*Sin[c + d*x] + 3*Sin[2*(c + d*x)]) - 24*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2
, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(60*d*Sqrt[Cos
[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.82, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 0.45, size = 250, normalized size = 2.63 \[ -\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (-12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+32 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-13 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x)

[Out]

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
+32*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))-13*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 0.74, size = 104, normalized size = 1.09 \[ \frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {4\,a^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}-\frac {2\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^2,x)

[Out]

(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a^2*ellipticF(c/2 + (d*x)/2, 2))/(3*d) + (4*a^2*cos(c + d*x)^(1/2)*
sin(c + d*x))/(3*d) - (2*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d
*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________